#include "T49HbtCoulomb.h" |
T49HbtCoulomb
class description - source file - inheritance tree (.pdf)
public:
T49HbtCoulomb()
T49HbtCoulomb(const T49HbtCoulomb&)
~T49HbtCoulomb()
Double_t Ac(Double_t qinv)
Double_t AcUSP(Double_t qinv)
void CalculateConstants()
void CalculateConstantsUSP()
static TClass* Class()
Double_t ClassicalWeight(Double_t qinv)
Double_t ClassicalWeightUnlikeSignPairs(Double_t qinv)
Double_t GetConstant1()
Double_t GetConstant1USP()
Double_t GetCriticalMomentum()
Double_t GetCriticalMomentumUSP()
Double_t GetMeanSeparation()
virtual TClass* IsA() const
T49HbtCoulomb& operator=(const T49HbtCoulomb&)
void SetMeanSeparation(Double_t MeanSeparation)
virtual void ShowMembers(TMemberInspector& insp, char* parent)
virtual void Streamer(TBuffer& b)
void StreamerNVirtual(TBuffer& b)
Double_t Weight(Double_t qinv)
Double_t WeightUnlikeSignPairs(Double_t qinv)
private:
Double_t f_hbc hbc = 0.2 [Gev][fm] adjust natural units: hb=c=1
Double_t fMeanSeparation <r*> in the paper =~ radius of the source
Double_t f_d2 d2 in the paper = constant = 3pi/8
Double_t fBohrRadius a in the paper = bohr Radius = 388 fm for like sign pion-pion system
Double_t fConstant1 equation 9 in the paper
Double_t fConstant2 equation 10 in the paper
Double_t fCriticalMomentum crossover momentum k~ in the paper equation 9
Double_t fCriticalMomentum2 square of the crossovermomentum
Double_t fBohrRadiusUSP a in the paper = bohr Radius = -388 fm for UNlike sign pion-pion system
Double_t fConstant1USP equation 9 in the paper
Double_t fConstant2USP equation 10 in the paper
Double_t fCriticalMomentumUSP crossover momentum k~ in the paper equation 9
Double_t fCriticalMomentumUSP2 square of the crossovermomentum
T49HbtCoulomb()
constants of nature
~T49HbtCoulomb()
empty
void SetMeanSeparation(Double_t MeanSeparation)
void CalculateConstants()
in equation 8 in the paper
Double_t Ac(Double_t qinv)
The gamov function
in the paper: 2 pi eta = (2 * pi) / (k*a) = (2 * pi) / ( a * ( qinv/2 ) ) = 4*pi*hbc/(a*qinv)
Double_t Weight(Double_t qinv)
depending on qinv use quantum mechanical or classical solution: equation 8 in the paper
qinv = 2 * k : k is used in the paper, here we use qinv
Unlike sign pairs
Double_t WeightUnlikeSignPairs(Double_t qinv)
depending on qinv use quantum mechanical or classical solution: equation 8 in the paper
now for unlike sign pairs (USP), i.e. : negative Bohrradius ! (see page 250 in the paper)
qinv = 2 * k : k is used in the paper, here we use qinv
Double_t AcUSP(Double_t qinv)
The gamov function, now for unlike sign pairs
in the paper: 2 pi eta = (2 * pi) / (k*a) = (2 * pi) / ( a * ( qinv/2 ) ) = 4*pi*hbc/(a*qinv)
void CalculateConstantsUSP()
equation 8 in the paper for unlike sign pairs
Double_t ClassicalWeight(Double_t qinv)
the coulomb correction derived in a simple toy model derived in
G. Baym & PBM, Nucl. Phys. A610 (1996) 286c-296c
electron charge in natural units = 0.0854245
reduced mass m1*m2+(m1+m2) with pion mass (m1=m2=0.139 GeV) m(reduced) = 0.069 [GeV]
fMeanSeparation must be positive !
Double_t ClassicalWeightUnlikeSignPairs(Double_t qinv)
the coulomb correction derived in a simple toy model derived in
G. Baym & PBM, Nucl. Phys. A610 (1996) 286c-296c
electron charge in natural units = 0.0854245
reduced mass m1*m2+(m1+m2) with pion mass (m1=m2=0.139 GeV) m(reduced) = 0.069 [GeV]
fMeanSeparation must be positive !
Inline Functions
Double_t GetConstant1()
Double_t GetCriticalMomentum()
Double_t GetConstant1USP()
Double_t GetCriticalMomentumUSP()
Double_t GetMeanSeparation()
TClass* Class()
TClass* IsA() const
void ShowMembers(TMemberInspector& insp, char* parent)
void Streamer(TBuffer& b)
void StreamerNVirtual(TBuffer& b)
T49HbtCoulomb T49HbtCoulomb(const T49HbtCoulomb&)
T49HbtCoulomb& operator=(const T49HbtCoulomb&)
Last update: Thu Aug 17 15:31:06 2006
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.